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Polymorphic phase transitions in systems evolving in a two-dimensional discrete space
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Polymorphic phase transitions in systems evolving in a two-dimensional discrete space have been studied.
The driving force of the transitions appears to be a difference between two main energetic contributions: one,
related to the thermal activation of the process, and another, being of quantum nature. The former~high
temperature limit! is naturally assigned to the expansion~melting! part of the transition, while the latter~low
temperature limit! has much in common with the contraction~solidification! part. Between the two main
physical states distinguished, there exists a certain state, corresponding to a discontinuity point~pole! in the
morphological phase diagram, represented by the well-known Bose-Einstein~Planck! formula, in which the
system blows up. This point is related to an expected situation in which the contour of the object under
investigation stands for the Brownian or purely diffusional path, with the fractal dimensiondw52, and the
situation can be interpreted as some emergence of an intermediate ‘‘tetratic’’ phase. This, in turn, recalls a
certain analogy to the equilibrium~order-disorder! phase transition of Kosterlitz-Thouless type, characteristic
of, e.g., rough vs rigid interfaces in a two-dimensional space, with some disappearance of interface correlation
length atdw52. Otherwise, the contours of the objects are equivalent to fractional Brownian paths either in
superlinear or ‘‘turbulent’’ (dw,2; the expansion case!, or sublinear, viz., anomalously slow (dw.2; the
contraction case! regimes, respectively. It is hoped that the description offered will serve to reflect properly the
main subtleties of the dynamics of the polymorphic transitions in complex ‘‘soft-matter’’ systems, like forma-
tion of lipid mesomorphs or diffusional patterns, with nonzero line tension effect.@S1063-651X~99!08706-1#

PACS number~s!: 05.70.Fh, 71.10.2w, 05.60.Cd, 81.30.Fb
n
th
o
e

po

m
d
ity
on
e,
e
ls

d
f

-
of
om

he

on
s
ec
e

om
pe

o

ing
ive
tic

a

he
in
n
e a
sm
e

to
or

tic
of

ght
is

e of
’’
he
it

by
of

ns,

-

I. INTRODUCTION

A main challenge of recent developments is the recog
tion of the interplay of microscopic interfacial dynamics wi
external macroscopic fields in the determination of the m
phology of evolving patterns. The real challenge, howev
appears when a system under study is complex, i.e., it
sesses quite nontrivial dynamics@1#. This is very often the
case of many biophysical systems, like, e.g., lipid me
branes, liquid-crystalline assemblies, protein crystals, mo
biomaterals, etc., which manifest high viscosity, sensitiv
to some changes of external physicochemical conditi
~temperature, pressure,pH, light, strain-stress respons
etc.!, chemical reactivity, presence of fluctuations of eith
thermal or athermal nature; moreover, since we may a
consider a behavior of individuals of nanometer sizes an
very short time~low temperature! scales, a certain role o
quantum effects cannot be excludeda priori @2#.

The scaling concept~more generally, the renormalization
group approach! @3#, being a fundamental theoretical idea
a microscopic-to-macroscopic adjustment of systems c
posed of a certain number of elementary subunits~mol-
ecules; individuals!, was frequently used to characterize t
behavior of such systems in both static~time-independent! as
well as dynamic domains. Quite often the random walk c
cept was attached to it@3#, being in the last few decade
intensively developed in the both above mentioned dir
tions; see@1,4#. The concepts listed above have often be
accompanied by the concept of anomalous kinetics in c
plex systems, usually named the glassy dynamics or dis
sive ~in some sense, fractal! kinetics @5#.

The phase changes in ‘‘soft-matter’’ systems, e.g., c
PRE 601063-651X/99/60~2!/1252~10!/$15.00
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loids, surfactants, complex fluids, amphiphiles, etc., hav
their prerequisites in some rather old but perennially al
critical phenomena, like ferromagnetic-to-paramagne
phase transitions or transformations in superfluids (14He),
are presently a subject of intense study~cf., @6,2#, and refer-
ences therein!. An intriguing task here seems often to be
reasonable though phenomenological~even! description of
the system under study in terms of some heterogeneous~in-
voking this notion, we wish to stress an important role of t
interface or quasicrystal’s surface, or finally, of the gra
boundaries! or, in particular, polymorphic phase transitio
concept, being applicable to a ‘‘soft-matter’’ system, wher
thermotropic, barotropic, as well as lyotropic mesomorphi
~for example, of phospholipids! appears to be a key featur
thereof@7#.

While trying to describe the phase changes we have
know whether they take place near the equilibrium point
rather out of it~sometimes also: how far from it!. We have to
know as well whether we will be interested in some sta
picture of the process, such as, for example, diagrams
coexisting phases, or perhaps we wish to know, how mi
the phases intermingle if, for instance, the temperature
changed, and how does the process look just in the cours
time? It is also a possibility to work in a certain ‘‘combined
way. E.g., we can benefit from some knowledge of t
~static! equilibrium phase picture, just for attempting to use
effectively in constructing the so-called morphological~dy-
namic! phase diagrams. This method will be exemplified
certain known scenarios, in which some emergence
~dis!ordered shapes under nonequilibrium growth conditio
like various mesomorphs in lipids@7#, Hele-Shaw or
‘‘diffusion-limited-like’’ patterns in the so-called dense
1252 © 1999 The American Physical Society
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PRE 60 1253POLYMORPHIC PHASE TRANSITIONS IN SYSTEMS . . .
branching morphology regime, etc.@8–13#. Moreover, to get
a physically consistent picture we do postulate a kind
thermodynamic-geometrical adjustment of the system un
study, just to let the complex system evolve at criticality in
self-organized manner@14#.

In this work, to study both the nondynamic as well
dynamic aspects of polymorphic phase transitions in a t
dimensional ~2D! discrete space, we propose a~simple!
model that merges a discrete picture of a polygon embed
in the square lattice with some thermodynamic-geometr
concept. The thermodynamics means here certain scalin
guments@12#, while geometry is ‘‘reduced’’ to use a Stein
haus rule for evaluating the polygon’s area~Fig. 1! @15#.
Since the main goal of this paper is mostly to reveal a g
eral mechanism leading to the determination of the ‘‘av
aged’’ velocity of the evolving ensemble~cluster of mol-
ecules; ‘‘molecular condensate;’’ quasicrystal! while passing
~slowly or vigorously! through many states of quasiequilib
ria, e.g., in ordered spin glasses@5#, the dynamics of the
process will be of interest. Yet, some equilibrium propert
of the contraction-expansion~specifically, solidification vs
melting! phase transformation will be mentioned, too. Esp
cially, we wish to recall the role of structural defects@6#
when considering the transition process~see Appendix A!.

Thus, as is probably expected@5,13#, by imposing a dis-
crete time dynamics on the system under investigation
working within the concept of existence of a set of dynam
quasiequilibria~and also by assuming that the system is
pable of passing through them!, we are able to get som
evolution rules for the surface fractal in a 2D space~square
lattice!. The surface~enveloping line! is proposed to be mod
eled by a random walk trajectory, which is a fractal of d
mensiondw @4#. The process is, in general, highly curvatu
driven, which is very characteristic of many phenomena
biological interest, like solidification~crystallization! in com-
plex media, wetting, formation of biomembranes~vesicles,
micelles!, bubbles, and interfaces@7,10,12#.

The paper is organized as follows. In the next section,
present a picture of the growing process in a discrete
space~the reader is also encouraged to see@13#!. In Sec. III,

FIG. 1. Schematic representation of the Steinhaus rule~2!. The
areas of the triangle, trapezium, and square are designated byA1 ,
A2, andA3, respectively, and are evaluated to be 9, 8, and 4;
internal as well as perimeter points of the triangle have been dr
as well ~for the other symbols, see the legend of the picture!.
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some basic steps of construction of the morphological ph
diagram are proposed, whereas in Sec. IV its basic prope
in terms of the synchronized dynamics~collective or coop-
erative dynamics! have been revealed, and the physical o
gin, touching somehow the quantum character of the th
mally activated transition process, has been pointed out
this section, the thermodynamic-geometrical adjustm
mentioned above has been utilized~it provokes discussion o
the self-organization or some other type of effectiveness
the growing process@14#!. As a result, a Bose-Einstein-lik
relation has been derived~see also Appendix B! and dis-
cussed in terms of the so-called Kosterlitz-Thouless~KT!
order-disorder phase changes~cf. Appendix A!, for which
both the dynamic structural adjustment and discretenes
the physical space play an important role@16#. Conclusions
regarding some examples based preferentially on stud
the lipid, and similar, e.g., bacteria systems@6,7,11#, com-
plete the investigations presented in this work.

II. DISCRETE PICTURE OF THE PROCESS

Certain physically valuable information is accumulat
about a cluster~molecular ‘‘condensate’’ or crystal!, at a
dynamic quasiequilibrium with its surroundings and locat
in a 2D space~square lattice! on its nucleus, if one provides
~i! an ‘‘averaged’’ statistical-thermodynamical description
terms of the scaling concept, like

^A&;pDws, DwsP@0,̀ !, DwsÞ1, p@1 ~1!

wherep stands for the number of the perimeter~or periphery!
sites of the polygon of averaged area^A& embedded in a 2D
space; the periphery cluster’s sites are the most outer o
pied sites of the object under consideration, andDws repre-
sents the random walk size exponent†cf. @9,12,13#, for some
examples; the scaling formula~1! has proved to be useful a
least for, e.g., vesicles or Eden clusters, withDws'3/2, i.e.,
approximated by theself-avoiding random walk~SARW!
trajectory, or diffusion-limited aggregates~DLA ! grown un-
der vanishing surface tension conditions, withDws'1, but
not precisely equal to 1@10,11,8#‡; ~ii ! exact information
about the areaA ~not to be confused witĥA&) of a convex
single polygon~cluster! embedded in the square lattice, an
spanned on a certain number of lattice nodes that are e
the internal@denoted byi; here i @1, cf. Eq.~1!# or the ex-
ternal ~perimeter! points, designated byp ~again!, found by
Steinhaus@15# to be ~see Fig. 1; for convincing the reade
some examples with a triangle, trapezium, and square h
been offered!

A5 i 1
p

2
21. ~2!

To enter the physics of the cluster~polygon! at the equi-
librium point, let us, for example, suppose that bothp and i
sites, placed on the square lattice nodes, are occupied e
sively by lipid molecules, and that the centers of inertia
the macromolecules correspond to the precise location
p’s and i ’s. Note also that the molecules undergo, indep
dently and with their own frequencies, oscillations arou
the position of the centers of inertia at equilibrium. Invokin
a simplest and well-known approximation, they can be r
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1254 PRE 60A. GADOMSKI
ognized as harmonic oscillators~Appendix B!, though some
extension to the anharmonic case is plausible.~Note that the
oscillating ensemble as a whole does oscillate with an a
age frequency, being the arithmetic mean of individu
eigenfrequencies.! Going back to Eqs.~1! and ~2!, let us
accept in our further studies some negligibly small statist
uncertainty in the system~‘‘compact’’ lattice objects grown
from a nucleus; no fuzzy or ‘‘dispersive’’ aggregates!,
namely,e[u^A&2Au, for a certaine so that 0,e!1, which
results@by comparing directly Eqs.~1! and ~2!# in

i[ i ~p!5apDws2
p

2
11, ~3!

with DwsP@0,̀ ), butDwsÞ1, e.g.,Dws'3/2 @12#. Note that
a is a positive proportionality~thermodynamical! parameter.
It can be called the area-expansion~or, contraction! param-
eter@see Eq.~1!, in whicha may always enter as a prefactor#.
The biggera is the larger the averaged area of the cluster
be. If, in turn, a attained smaller values, then the clus
would shrink by decreasing its area. Let us notice thata must
depend upon temperature and may vanish at a critical t
perature for whichDws51 so that Eq.~3! will be useless if
taken for further analysis becausei ’s can be negative, eve
thoughp will be the smallest, i.e., whenp54 @look at Eq.
~2!: if p54 and i 50, thenA51, and the possibly smalles
cluster in the square lattice consists exclusively of molecu
located at its periphery#.

Relation~3! stands for some equilibrium global characte
istics of the cluster formation process the mechanism
which has not yet been specified. It is taken at a single
namic (sic) quasiequilibrium point. It goes without saying
however, that the usefulness of relation~3! in such a form
can easily be questioned, e.g., because of its incomplete
which means that we do not know the locations ofi and p
points, so that we are~at this stage of our considerations! not
able to reconstruct how the cluster looks, just from the inf
mation contained in Eq.~3!. But, we believe that the ‘‘sta
tistical information measure’’ given by Eq.~3! is properly
constructed, at least, because it is straightforwardly obt
able from Eqs.~1! and ~2!, and because it includes the d
sired thermodynamic-geometrical content that we wish
have. Perhaps, an appealing simplicity is here the main
gument for keeping Eq.~3! in our further study; see@13#, for
further analysis of Eq.~3!.

Now, let us make the two next physically motivated a
sumptions. The first is that the system under study
proaches not one single dynamic quasiequilibrium state,
rather passes, in subsequent time instantst1 ,t2 , . . . ,
through, in general, infinitely many states of dynamic eq
libria so that it is eventually driven out of the single equili
rium from which we start att0>0. We are here mostly mo
tivated by well-known facts concerning either extrema
vigorous or apparently slow transport as well as relaxat
dynamics in many ‘‘soft-matter’’ systems, like polymer
model biomaterials,~ordered! glassy or polycrystalline sys
tems, etc.@3,5,4#. The second is, in fact, a presumption th
the scaling form~1! simply survives for a quite broad rang
of growing processes@1,11,12#, no matter how far the physi
cochemical conditions controlling the process, e.g., temp
ture, will be changed.
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In consequence, all the above stated points result in
following: ~i! i and p must be functions of time, i.e.,i
[ i (tn) and p[p(tn), for n50,1,2, . . . ; ~ii ! if the system
leaves one dynamic equlibrium state~at tn21, for example!
for another neighboring state~at tn), then the prefactora as
well as the~dynamic! exponentDws may change their value
because the move is certainly caused by a change of
physicochemical conditions controlling the cluster formati
process; in this case, we have to write down explicitly th
a[a(pterm) andDws[Dws(pterm), whereptherm is generally
related to a control parameter taken from the parametric
of physicochemical conditions of the cluster formation pr
cess. Let us notice, in this moment, that by making use
assumptions~i! and ~ii ! in our further studies, we are goin
to postulate something like the existence of a certain equ
lence between temperature~thermodynamic parameter! and
time ~temperature-time or Williams-Laudel-Ferry equiv
lence principle@5,1#! since any sufficiently detectable chang
in value of the control~thermodynamic! parameter should
cause a ‘‘jump’’ of the system towards another dynam
equilibrium state detected at timetn , where n51,2, . . . .
Such a situation is very characteristic of, e.g., polymeric s
tems in polycrystalline or amorphous states of characteri
relaxation~Vogel-Fulcher-Tammann! time @3,5,2#; see Ap-
pendix B for further discussion.

III. MAIN STEPS OF CONSTRUCTION
OF THE MORPHOLOGICAL PHASE DIAGRAM

If a general picture drawn in Sec. II is accepted, let
from now try to push the system~molecular agglomerate!
through the dynamic quasiequilibria, or to impose a discr
time dynamics on it. In other words, we will be interested
knowing what is the total number of the internal subunits
the cluster at time instanttn @denoted byi (tn)], having
known that at the preceding time momenttn21 their number
is equal toi (tn21). We can obtain it, if we simply perform
discrete differentiation over both sides of Eq.~3!, which re-
sults in

D i

Dt
5S aDwsp

Dws212
1

2D Dp

Dt
, ~4!

where D i 5 i (tn)2 i (tn21) and Dp5p(tn)2p(tn21); obvi-
ously, Dt5tn2tn21. Some discussion of the derived equ
tion in both discrete (Dt finite and sufficiently small! as well
as continuous (Dt˜0) regimes has been presented in@13#
for a case mostly pertinent to the formation of vesicle
where the surface~in a 2D space, one has a line ‘‘envelop
ing’’ the object under growth! was modeled by a SARW
trajectory. Notice that for a close-to-equilibrium case,
turn, one getsdp/d i 5(aDwsp

Dws212 1
2 )21, wheredp and

d i stand for very small departures ofp and i from the corre-
sponding equilibrium values, and one may expect a cer
number of physically interesting effects, like existence
some ‘‘tetratic’’ ~intermediate! phase, provided that there ex
ist two main types of phases~a low temperature contracted
for Dws,1 and a high temperature expanded, whenDws
.1), and disappearance of the coherence length, or e
certain indications of a topological defects’ mediated tran
tion @16# ~see Appendix A for details!.
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Now, let us be interested in a more general case far
ceeding the case for whichDws5DSARW, where DSARW
'4/3 @9#. Namely, we wish to consider a quite gene
physical situation

Dws5
2

dw
, ~5!

wheredw represents a dimension of the random Brown
path that is either of pure Brownian nature, withdw52 ~i.e.,
our singularity point on the nonequilibrium morphologic
phase diagram that we are going to invent!, or the surfaces of
the objects are equivalent to fractional Brownian paths
superlinear, viz., extremely fast~say, turbulent;dw,2), or
sublinear, i.e., anomalously slow (dw.2) regimes, respec
tively; see@4,5# for some basic information.

Throughout the rest of the paper, we wish to explo
according to what has been proposed in@8# and also by oth-
ers @10,11#, some analogy between equilibrium phase d
grams, like that presented in, e.g.,@12,6#, and the nonequi-
librium morphology diagrams offered for systems with t
shapes which are observed to change their characteris
from being more or less ordered~quasicircular! to exposing a
rather irregular~disorderd! peripheral microstructure~DLA-
like fractal, seaweed, or dendritic objects~see@10#! in the
case when the driving force of the process is slowing do
e.g., Hele-Shaw patterns, or systems manifesting the
called dense-branching morphology!; see Ben-Jacob an
Garik in @8# for details. In particular, in their studies, th
authors @8# propose to examine relationships between
‘‘averaged’’ growth velocity~designated bya), i.e., the ve-
locity ‘‘weighted’’ according to the geometric-dynamica
characteristics of the interface@in our model, the relative
changes inp stand for the excess quantity, when compa
with the changes ofi of the same type; see Eqs.~6! and ~7!
below#, and the control parameter, just representing so
quantitative characteristics of the surface of the evolving
ject @in our case, it must be eitherDws or dw ; see Eq.~5!#.
The velocitya will be derived in a way similar to that pro
posed in@8#, i.e., a5ap /a i , where the twoa ’s are defined
as

ap5
p21Dp

Dt
, a i5

i 21D i

Dt
. ~6!

Rearranging Eq.~4! and usinga5ap /a i as well as re-
calling Eq.~6!, we obtain

a[a~Dws!5
2i

p

1

2aDwsp
Dws2121

. ~7!

This way, we get a certain prerequisite of the morpholo
~dynamic! phase diagrama(Dws) which can be drawn for
respective time intantst0 ,t1 ,t2 , . . . . The first thing that
must be noticed, however, is that looking at Eq.~7!, one sees
a possibility or even danger of some morphological catas
phe ~escape ofa to `). This can surely happen if@see Eq.
~7!, again#

2aDwsp
Dws2151. ~8!
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It is equivalent to extract a quantity, designated bypmc ,
which one may call a critical number of perimeter poin
attained if the system would undergo a first order phase t
sition ~or, specifically, a kind of pirroelectric effect could b
noticed, if one presumed that we are working with ferroele
tric 2D quasicrystals!, with some release of a transition hea
and when the system eventually arrives at one of the
main transition states discontinuously~a sharp peak ina),
and if there is no chance to detect any intermediate state~see
discussion above!. In other words, one could state that th
first order phase transition cannot be ruled out. This can
tainly happen at a temperature~transition! point Tmc . Thus,
the above mentioned quantity looks like

pmc5~2aDws!
21/Dws21, a.0, DwsP@0,̀ !, DwsÞ1.

~9!

Let us state explicitly that the first morphological sma
(a˜`) assigned to the evolving system is to carry it t
wards a global~contrary to infinitely many states of dynam
quasiequilibria which can be anticipated as local! equilib-
rium point, assigned either to a solidified~collapsed or
shrunken! or to a molten~expanded or extended! state. We
may name this type of catastrophe shock undercooling
shock overheating, respectively, depending on the direc
of the driving force, e.g., undercooling@10,11#. Following
the rationale expressed above, however, we should like
keeppmc constant because global equilibrium characteris
have to be more or less balanced by a play of parame
driving the system. There is also such a possibility in o
description. It can be realized by noticing that if one o
serves some change inDws , caused by a change in the phys
cochemical conditions of the process, then it must be
adequate~natural! compensation of this effect by changinga,
and vice versa, so that forDwsÞ1, one would assume tha
there exists a limiting constant value ofpT ,

pT>~2aDws!
21/Dws215const.0. ~10!

Let us mention that in this way we have, in some sen
worked out the thermodynamic quantitypT to be indepen-
dent of an interplay betweenDws anda, i.e., of the dynamic
interface characteristics when compared with the expan
or contraction magnitude of the cluster. Note, however, t
by doing that some constraints have been imposed on
system; cf. Appendix A. Keeping this in mind, one can r
write Eq. ~7! as

a~Dws!5
2i

p

1

qT
Dws2121

, ~11!

whereqT5p/pT stands for a kinetic-thermodynamical qu
tient. There exists another factor being rather of kinet
geometrical nature. Let us denote it byqG[2i /p @see Eq.
~11!#.

Now, we wish to introduce a next~topological! simplifi-
cation of our description. It relies on considering exclusive
the geometrical objects spanned on the nodes of the la
that are of quasicircular form~see discussion in@13#!. In
consequence, we take into account such 2D objects w
are quasicircles of radiusr 6m(f)d6n(f)d26•••, where
d, the perturbation amplitude, being usually very small wh
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1256 PRE 60A. GADOMSKI
compared withr, andm, n are continuous perturbing func
tions of angular argumentf; cf. @17,18#.

Next, let us simplify the system even more. This mea
let us assume that the evolving quasicircular object is
constant density. Under such an assumption, the cons
number density of internal points of the cluster, denoted
r i , is given byi /pr 2 while the constant number density o
perimeter points of the cluster,rp , can be written asp/2pr .
Using these trivial arguments, one can write explicitly

qG[
2i

p
5

p

pG
, ~12!

where

pG5
2prp

2

r i
, ~13!

and is constant.~Notice that, for the sake of clarity and sim
plicity, we have assumed that the evolving object is quasi
cular, as e.g., in the case of Mullins-Sekerka or Saffm
Taylor instability concepts@11# which have proved to be
useful, at least, in the description of the crystal or finge
growth.! Using Eq.~13! we can rewrite our basic relation a

a~Dws!5
qG

qT
Dws2121

. ~14!

Note thatqG , like qT , is also independent ofDws anda,
and that bothq’s are dynamic~they implicitly depend upon
time! as well as dimensionless variables.

At the end of this section, let us realize that another m
phological catastrophe may appear, when looking at form
~14!, namely,

Dws51, ~15!

which corresponds to a situation in which the interface ‘‘m
lecular condensate’’ vs surroundings is represented by
pure Brownian path~a most disordered or ‘‘disorganized
case!. In this case, we have again to observe some escap
a to `. This type of morphological crash we will rathe
assign to the continuous phase transition concept, with
release of the transition heat, but with a certain appearanc
strong microstructural disorder at the interface. This kind
disorder may lead to a detection of some intermediate ph
which can be called the ‘‘tetratic’’ phase~Appendix A!, by a
certain verbal analogy with the well-known hexatic pha
mostly observed in melting phenomena realized in a trian
lar lattice. Notice that formula~14! is the most general rela
tion representing the morphological phase diagrams tha
offer in our present description, and that the jump ofa to
infinity may appear for either the first order (DwsÞ1, but
with appearance ofpT) or the continuous (Dws51, exclu-
sively! phase changes. In particular, it may throw more lig
on the classification of the transitions in all the systems
dergoing diffusional growth, with nonvanishing surfa
~line! tension effect@10,8,17,18#. It would also be of use
when studying the polymorphic phase transformations
phospholipids@7,6,1#, especially when some terminolog
borrowed from physical metallurgy, like the martensitic
diffuse phase transitions, may enter@7#.
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IV. POSTULATE OF SYNCHRONIZED EVOLUTION
DYNAMICS: EMERGENCE OF A BOSE-EINSTEIN

‘‘MOLECULAR CONDENSATE’’

In this section, we propose another very interesting a
physically motivated simplification to be built into our ap
proach. Namely, we postulate that@cf., Eqs.~10! and ~13!#
pT andpG can take on a common valuepc , namely,

pc.pT5pG , ~16!

which results inq.qT5qG ~let us believe that such aq
exists!. This can be called the assumption~or postulate! of
the synchronized dynamics, which means that the kinetic
scription proposed has reached a kind of thermodynam
geometricalconsensus. It may happen when the process
question proceeds gradually rather~like in chemical reac-
tions, for example, where the system quite frequently@14#
gets self-organized! than under some ‘‘hard’’ physical con
ditions. So, we claim here, in fact, that the process goes
self-organized~i.e., possibly efficient! way. We see that it
may be the easiest way for the system to evolve. It refle
also our opinion that the complex physical systems beh
quite ‘‘economically’’ when they follow their evolution un
der the sometimes very cumbersome influence of phys
chemical factors causing certain changes in the system
havior, i.e., at the vicinity of a critical parameter pointpT ;
cf. Eqs. ~16! and ~10!. In other words, by postulating Eq
~16!, we assume that the system near criticality organi
itself to pass smoothly through the ‘‘landscape’’ of dynam
quasiequilibria, which is very characteristic of, e.g., biolog
cal processes@19b#. Another rough but quite general inte
pretation may be proposed: the system probably ‘‘sees’’ t
it is ~energetically! better for it to proceed in an evolutionar
rather than a revolutionary way.

Assuming Eq.~16! ~with all the consequences of doin
that! one gets immediately

a~Dws!5
q

qDws2121
. ~17!

Let us notice that we have perhaps surprisingly gott
e.g., a formula that resembles very closely the Bose-Eins
~BE! distribution of phonons in an insulator@20#. This is
even its generalization. Obviously, some applications of
Bose-Einstein or Planck formula much exceed the case m
tioned. It is more general. E.g., it concerns the supercond
tivity ~mostly of second type! as well. Generally speaking, i
describes the behavior of some superfluid or superconduc
condensates. Do we have also in our case behavior w
resembles, at least in part, a BE condensation~e.g., an en-
semble of atoms oscillating around their equilibrium po
tions, and eventually spreading out or collapsing, as is
pected in the case studied!?

Before really trying to answer this question let us proce
further in that field. Namely, utilizing Eq.~16!, let us make
use of the~discrete! time-temperature equivalence princip
mentioned in Sec. II. In other words, let us ‘‘measure’’q in
terms of discrete time instants or in terms of temperat
values assigned to the subsequent states of dyna
quasiequilibria. It can be done, e.g., for a finite number
measurements, and when one states in a naive way tha
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q5e61/n, n51,2, . . . ,N ~18!

where e'2.71 stands for the Napier constant andN is a
natural number that can be interpreted as a last time or t
perature quantity measured~do not forget thatq5p/pc). The
6 sign preceding the exponentn21 is introduced here to
distinguish between the two main growing~quite general!
situations that we immediately recognize: the system ei
collapses~shrinks, solidifies, or ‘‘coagulates’’! in the course
of time @‘‘ 2 ’’ sign in the argument in Eq.~18!; Dws,1] or
expands@gets molten or swollen; ‘‘1’’ sign in the argument
in Eq. ~18!; Dws.1]. †Note that in the contraction regime
and when the time-temperature equivalence principle is
filled @5#, Eq. ~18! stands for a Boltzmann energy term#
There is also a certain case ‘‘in between,’’ i.e., when
evolution of the system is stopped or disturbed someh
e.g., by extremal freezing or heating, or interfacial structu
breakdown (Dws51) assigned to the interfacial or surfac
behavior of the evolving object. These situations corresp
to a blow up ofa mentioned above. Notice here that b
assuming Eq.~18! the number of perimeter sitesp is mea-
sured either as a multiple ofpc , which corresponds to som
expansion of the agglomerate, or as a fraction ofpc , which
indicates the contraction or shrinkage. Combining Eqs.~17!
and~18!, and multiplying both sides of the resulting equati
by e71/n, one can accurately arrive at the BE formula~cf.
@20#, Chap. 6 or@19#!

a8~DWS;n!5
1

e6(Dws21)/n21
, n51,2, . . . ,N ~19!

where, instead ofa, an exponentially weighted quantitya8
5ae7n ~the prime means that this quantity is primed, n
differentiated! was introduced. For a more convenient ana
sis let us rewrite Eq.~19! in a compact as well as mor
readable form, namely,

a8~z!5
1

e1/z21
, ~20!

where z2156DEs /ET , and DEs5Dws21 as well asET
5n (n’s indicate the subsequent time instants of dynam
equilibria taken at corresponding temperature values!. The
first energetic term,DEs , corresponds to a change of th
interfacial free energy~related very much to the surface te
sion! which is either released to the surroundings~with ‘‘ 1’’
sign; the expansion case! or taken from it~with ‘‘ 2 ’’ sign;
the contraction case!. Because the time-temperature equiv
lence principle is fulfilled, the second energetic term,ET ,
corresponds to the Boltzmann thermal energy.

A few remarks seem to be appropriate here. First, n
that uzu.1, which means that for a small free energy chan
a85z ~for a givenn), i.e., a linear case appears, which
even the case ofz;1 @20#. If, in turn, uzu!1, we get a
nonlinear~of large free energy change! a85e21/z, also for a
given n.

Second, as was mentioned before, the expansion dyn
ics is taken with a plus sign (1DEs) and because ofDws
.1 @4#, in this case,z remains positive. If, in turn, the con
traction ~shrinkage! dynamics is realized, the change of i
terfacial free energy is of opposite sign, but fortunate
-
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t
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te
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,

Dws,1, so that the argumentz also takes on positive value
@20#. ~It also means that there is, in fact, no reason to ta
abolute values ofz.!

Thus, we have arrived at a more or less consistent pic
of the phase transition during the evolution process that
propose to study in terms of the morphological phase d
grama8(z). It represents a relation between an ‘‘average
@8# and ‘‘thermally weighted’’@see Eqs.~19! and ~20!# ve-
locity a8 of the evolution of a molecular cluster in a 2
discrete space and the interfacial free energy excess~inevi-
tably associated with a change of surface tension@19#!, rep-
resented byz, realized during the phase transformation.

The morphological phase diagram shows that there
two evolving phases: an expanding~specifically, molten!
(DEs.0 andDws.1 or dw,2) and a collapsing~say, so-
lidified or ‘‘frozen’’ ! (DEs,0 andDws,1 or dw.2); cf.
Eq. ~5!. The important case ‘‘in between’’ corresponds to
‘‘morphological crash’’ at the interface@see Eq.~15!#, which
mathematically means thata8(z) blows up~the main math-
ematical reason is thatDWS51 or dw52, which is equiva-
lent to the fact that the interface growing object–exter
medium is a pure Brownian trajectory!. This scenario en-
ables us also to recall some rationale about the presenc
the intermediate phase~‘‘tetratic’’ phase! @21#. Thus, the ex-
istence of a discontinuity~pole! at Dws51 in a8(z) makes a
choice for interpreting it in terms of KT order-disorder pha
change; see Appendix A for further discussion. If one defin
a characteristic interface length or a correlation length, sau
asu5z21 ~but taken also per unit interface length!, then one
may notice thatu vanishes, just atdw52 at some transition
temperature point. This again resembles quite apparently
scenario usually assigned to KT phase transitions@16# ~best
known for 2D Coulomb lattice gas, where the transition b
tween an ‘‘ordered’’ state of ‘‘frozen dipoles’’ and a plasm
disordered state is noticed!, especially for systems such a
rigid vs rough interfaces in a 2D space@22#. Such transitions
are classified to be of infinite order according to the Ehr
fest scheme; see@16# for details. Moreover, let us note tha
the analytical description of the transformation process
given, when the synchronized dynamics is presumed, by
BE relation ~see Fig. 6.2 in Chap. 6 of@20#!, much more
pronounced in the expansion than in the contraction case~for
the latter,DswP@0,1), exclusively!, or its generalization; cf.
Eqs. ~14! and ~16!. The synchronized dynamics would be
landmark of self-organized criticality~see, the beginning o
the section! and would manifest some defense of the syst
against undergoing the phase transition of the first ord
Under the assumption of relatively ‘‘lazy’’ dynamical beha
ior, observed, e.g., in~ordered! spin glasses as well as i
biosystems~i.e., under some presence of constraints and
erarchy of degrees of freedom, from slow to fast! @5,1,2,21#,
one can arrive at the Vogel-Fulcher-Tammann characte
tics, and its relations to the quantum ground state avera
energy of the ensemble as a whole; see Appendix B.

V. CONCLUSIONS

In this study, a phenomenological approach to the po
morphic phase transition in complex systems@23#, where the
structure formation process takes place on a seed loc
somewhere in a square lattice, has been proposed. The
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idea was to apply both the scaling argumentation as well
planimetric Steinhaus rule, within some level of uncertain
and to postulate that the system passes, in principle, thro
infinitely many dynamic quasiequilibrium points, like in th
‘‘long-tail’’ or dispersive kinetics concept in biophysic
@24,5#. The result is that a nonlinear realtionship@Eq. ~3!; see
Sec. II# has immediately been recovered, and by imposin
~discrete! time dynamics on the system, one is able to arr
at an evolution equation@difference scheme; cf. Eq.~4!# that
includes inherently a curvature change term@13# very char-
acteristic of the growing phenomena, like crystallizati
~also, single crystalline domains in lipid monolayers@23#!,
solidification ~faced 2D quasicrystals@2,18#!, emergence of
bubbles and vesicles and microdomain growth@17,2,21#, for-
mation of biomembranes~interfaces! @9,25#, etc. It is worth
stating here explicitly that the description offered is based
utilizing the random walk concept, which has proved to
useful in this subject@12,9,4,3#.

The procedure for the morphological phase diagram
vented in Sec. III apparently shows that the kinetics of
growing process can only very crudely be interpreted~see
Binney et al. @16#, Chap. 1! as that of first order@see Eq.
~10!; the discontinuity atpT as well as some common expe
tation that the transition heat is released suggest doing#,
like that of diffusional growth; cf.@10#, and references
therein. But we see a more subtle and self-consistent in
pretation of the transition process that we have stud
Namely, it resembles very much order-disorder phase tra
tions of KT type~see above!, e.g., those for rigid~ordered!
vs rough ~disordered! interfaces in two-dimensional~dis-
crete! space@22#. The characteristic~or correlation! interface
lengthu, inversely proportional toz ~see Sec. IV!, vanishes
right at the point of disorder picked up atDws51, or equiva-
lently, dw52.

To be more specific, and for convincing the reader of
usefulness of our approach, a few examples have been
taposed below. These are~i! as reported by Ben-Jacob an
co-workers@8#, mostly for Hele-Shaw patterns@18#, and by
Brener, Müller-Krumbhaar, and co-workers@10#, there exist
very complex dense-branching morphologies~DBM! that,
under nonequilibrium growth conditions, produce obje
with ordered shapes, and the accompanying interfacial
tern formation process includes certain selection rules;
same was confirmed in@10#, where some morphology dia
grams for diffusional growth@17# have been sketched, an
where, as a result of interplay between the driving force~un-
dercooling! and the surface anisotropy, a variety of mo
phologies, from, e.g , compact seaweed, via some interm
ate fractal dendritic to compact dendritic have been obtai
~yet, the processes have been preferentially assigned to
first order phase transition processes, though a chaotic
gime has also been mentioned! @10#; ~ii ! comparing to~i!,
similar patterns have been obtained, and analogous scen
have been drawn by Mo¨hwald and co-workers@23# for am-
phiphilic monolayers~with plenty of structural, e.g., fracta
forms therein!, Ben-Jacob and co-workers@8#, and Mat-
sushita and co-workers~they also deliberated about som
application of the random walk concept! for bacteria, also
Nittmann and co-workers@11# for 2D myristic acid mono-
layers, where a passage with characteristic surface deve
ment, commencing from a liquid condensed phase, ‘‘sk
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ping’’ over an intermediate phase to eventually ending at
liquid expanded state, along with increase of temperat
has been reported;~iii ! as impressively illustrated by
Laggner, Kriechbaum, and co-workers@7#, the thermotropic
or barotropic phospholipid phase transitions may result i
multitude of polymorphic forms, such as, e.g., lamellae
hexagonal patterns, and there are some processes that
form to the scenario sketched in the paper, like the lamel
to-inverse hexagonal (HII ) transition or even a pretransitio
in phosphatidylcholines, where, in the course of tempera
change, a positional order of macromolecules is gradu
lost ~an orientational order is at least slightly perturbed!, and
where an intermediate order-disorder zone~with its disclina-
tion lines! emerges during the process; and~iv! Gruner@25#
and others@6# also pointed out some interesting approach
and ideas, mostly related to the concept of the curvature~in
the spirit of Helfrich@6#! of model biomembranes; there, on
considers the normal micellar-bilayer-inverse micellar int
passage as a good candidate conforming to the expan
~head groups outwards! vs contraction~head groups inwards!
phase transformation, with the ‘‘tetratic’’ intermediate~head
groups in a plane! phase in between.

Listing the above examples, we may firmly say that the
is here a place for BE statistics as a tool for describing
evolution process in terms of the morphological diagram t
we propose. It is so, indeed, since the BE statistics is
quantum statistics, and specifically, the velocitya8 @compare
Eqs.~14!, ~20!, and~B4! in Appendix B# emerges as a con
sequence of a difference of the two energetic contributio
i.e., one related to the thermal excitations of the cluste
molecules, and another one, which is the averaged energ
the quantum ground states; cf. Appendix B. In other wor
the fundamental ‘‘engine’’ of the process is a difference b
tween activities of the thermal phonons of the ‘‘molecu
condensate,’’ associated somehow with oscillations of in
vidual molecules, and the dislocational phonons ‘‘stuck’’
the groups of molecules, constituting structural defe
@21,26,27# of the condensate; cf. Eqs.~B4!, ~B5!, ~A5!, and
~A6! in Appendixes A and B, for comparison.~By the way,
note that some quite strict relations between the density
states of phonons in solid crystals, and the anomalous
dom walk concept, given by a walk visiting distinct sites
the crystal, which is a key feature of the dispersive kineti
see Płonka in@5#, have been presented, e.g., by Bunde
@18#.! Moreover, a selection mechanism naturally opera
during the transition process~see Appendices A and B!,
since the dislocations~viz., disclination pairs, characterize
by their Frank index@21,26#! as well as the quantum
~Planck! time scale effects do enter. Thus, by making use
this observation, and realizing the elementary driving fo
@Eq. ~B4! in Appendix B# of the process, under the dispe
sive ~‘‘long-tail’’ ! kinetic regime@24#, we may attempt to
elucidate various morphologies mentioned above.

Finally, let us underscore that it is not the first physic
situation@3,4# in which the random walk concept may prov
useful, and that it provides some reasonable argumenta
for elucidating complex phenomena.
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APPENDIX A: LANDMARKS OF THE CONTRACTION
VS EXPANSION KOSTERLITZ-THOULESS-LIKE

PHASE TRANSITION

It was noticed at the beginning of Sec. III that for a clos
to-equilibrium case one provides

dp

d i
5S aDwsp

Dws212
1

2D 21

, ~A1!

wheredp andd i stand for very small departures ofp and i
from the corresponding equilibrium values.†Note that the
right-hand side of Eq.~A1! depends exclusively upon one o
two main dynamic variables, that means, uponp, which will
also be helpful for specifying the transition as being me
ated by a disclination line@26#.‡ After applying a boundary
condition @16#, i.e., dp/d i 51 ~approximately! around p
5pc to Eq. ~A1!, wherepc @recall Eq.~16!# will provide the
renormalization~scale magnification! factor, and after rewrit-
ing the resulting equation in a logarithmic form, one ge
@see Eq.~3!, again#

~Dws21!ln pc1 ln Dws2 ln
3

2a
50. ~A2!

Even a very crude analysis of Eq.~A2! may lead to a
certain number of physically interesting effects, like a sim
analytical demonstration of the presence of some ‘‘tetrat
~intermediate! phase, and disappearance of the cohere
length, or even certain indications of a topological defec
mediated transition. Since necessary details can be fo
elsewhere@16,21,26#, it will be shown below in a sketchy
way.

1. Simplified Dws renormalization: Existence of a ‘‘tetratic’’
phase and disappearance of the coherence length

After making use of Taylor expansion for lnDws up to
third order, i.e., lnDws>Dws2111

2(Dws21)2 sinceDws may
also be greater than one, one physically interesting solu
to Eq. ~A2! has to be recast, namely,

Dws5A11 ln dc2 ln pc ~A3!

@dc5pc(3/2a)2#, which, after linearizing the square root
Eq. ~A3! ~let us call it the linear approximation, designat
by Dws

l ; it may be more suitable for the expansion ca
rather, unless some adequate compensation ofdc by pc is
provided, which is going to favor the contraction case,
turn! reads

Dws
l 511 ln

dc
1/2

pc
. ~A4!

The critical point Dws51 corresponds to a criticalac

53/2Apc which both mathematically~hexagonal shift! as
well as physically@7# means that one can ‘‘feel’’ the pres
ence of the ‘‘tetratic’’~‘‘hexatic’’ ! phase. E.g., after Laggne
et al. @7#, if the first ~Bragg! @1,0# dB spacing were equal to
-

-

-

s

e
’’
ce
’
nd

n

e

Apc, then 1/ac would be related to some characteristic d
tance in a hexagonal lipid phase of the model 2D biome
brane. If, in turn, one defined a coherence length of the s
tem, k, as k}1/a, and wished to look after a critica
exponent n of the transition process, n
5 ln(1/pc)/ ln(dDws/dk) at kc51/ac and forpc˜`, one ob-
tains at once some striking loss of coherence becausen5`.
Obviously, one must be aware of the very crudeness of
approximation offered here.

2. Topological defects’ mediated transition:
Similarity to a crystal’s disclination approach for nematics

due to Landau and Lifshitz

If one cares about mechanical singularities that supp
KT transitions well@16,21#, one can notice that Eq.~A1! is
exactly of the form of that used by Landau and Lifshitz
describe an effect of homogeneous disclination for nema
@26# @see Eq.~37.2! in the seminal book of Landau and Lif
shitz, and the analysis thereafter#. Transforming the results
presented in@26# to our language, we should notice that he
a ‘‘configurational disorder’’ ofp and i points or some
crowding ~a loss of positional and a perturbation of orient
tional orders! of the internal and mostly peripheral poin
will be responsible for a change of the disclination~Frank!
rank m. ~Recall that if m50, i.e., the index vanishes, th
structure of the crystal is not unperturbed mechanically.! Un-
der the asumption that the total number of points in the cr
tal, j 5 i 1p, changes periodically according to a rule@26#,
like j ( i 1pc)5 j ( i )12pcDws , one provides

m511S apc
Dws21

2
1

2D 21

, ~A5!

which would mean that the disclinations were genera
mostly at the periphery of our 2D crystal, and that they gr
or shrank as a result of some competition between
expansion/contraction magnitude, given bya and the ‘‘renor-
malization factor,’’ represented bypc ; cf. Sec. IV. One can
also explicitly write down that

Dws511
ln@~m11!/2a~m21!#

ln pc
. ~A6!

Note that by comparing Eq.~A6! with Eq. ~A4! the linear
approximation mentioned above also providesa as a func-
tion of m andpc . For completeness, it should be stated th
m can be either positive or negative, and cannot take any
value, but the multiples of 1/2, or must be an integer@26#. In
that sense, the ‘‘spectrum’’ ofDws is definitely not a con-
tinuous spectrum. This way, we agree with another c
straint of the transition process@5#.

APPENDIX B: HARMONIC APPROXIMATION
TO THE THERMAL ACTIVATION OF THE

‘‘MOLECULAR CONDENSATE’’—QUANTUM EFFECT
AND VOGEL-FULCHER-TAMMANN BEHAVIOR

The class of processes that we are going to describe
is undoubtedly a type of process that is driven by a diff
ence between some macroscopic and microscopic fields
pointed out by Scho¨ck @27#, the contribution of the macro
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scopic field is often equivalent to thermal activation@26#
@given by a thermal energy contributione(v,n), n stands for
the temperature here# of the ensemble, which is important fo
the high temperature limit of the process, whereas near
low temperature limit of the cluster~‘‘molecular conden-
sate’’! formation, one may expect the quantum effects, a
first approximation given, in the semiclassical approach,
the averaged energy of the ground states,eQ5(h/
2p)(v/2) (h represents the Planck constant, andv will be
specified below!, to be of prior importance@27,26,16#.

Assuming that the quantum contribution may enter@27#,
there is, in our opinion, a place for taking into considerat
the following natural redefinitions@cf. Eqs. ~11! and ~12!#,
namely,

qT5e61/n, ~B1!

qG5
h

2p
v, ~B2!

wheren is the temperature~time! variable frequently men-
tioned above~recall the time-temperature equivalence pr
ciple, cf.@5#!, andv stands for the averaged frequency of t
ensemble taken as a set of harmonic oscillators; cf. Sec
Notice that, by introducing a dissociation energy term, so
anharmonic contribution is also possible@27#. The redefini-
tions ~B1! and~B2 ! enable us to present Eq.~14! ~see, Sec.
IV for comparison! as follows:

a5
~h/2p!v

e6(Dws21)/n21
, ~B3!

which straightforwardly implies@27# that a is given by the
difference between the two types of energetic contributi
mentioned before, namely,

a5e~v,n!2eQ , ~B4!

i.e., some elementary flux-force@14# relation is recovered
Moreover, it is easy to evaluate the walk~enveloping line!
dimensionDws to be

Dws516
h

2p
v, ~B5!
lin

x-
-

,
,

he

a
y

-

II.
e

s

where, as before, the ‘‘1’’ sign corresponds to the expansio
case, while the ‘‘2 ’’ sign represents the contraction case.
is worth comparing Eq.~A6! with Eq. ~B5! to really antici-
pate the quantum contribution to the process under study.
us bear in mind that the ‘‘tetratic’’ case ofDws51 occurs
when eitherv50 ~a completely ‘‘frozen,’’ i.e., unrealistic
case! or the ‘‘quantal’’ timetQ , being of order of the Planck
constant, is sufficiently small. Since the latter is very w
fulfilled, one can try to conclude that the emergence of
‘‘tetratic’’ phase is mostly caused by the quantum contrib
tion, which is true in the low temperature limit~cf. @21,16#,
and references therein!, that means, forDws,1.

Moreover, it is interesting to report that for the low tem
perature limit, by comparingqT and qG @see Eqs.~B1! and
~B2!#, one easily recovers the well-known Vogel-Fulche
Tammann@5,28# relaxation timetV for a partly ~at least!
disordered system, simply by noticing that

v5v0e21/n, ~B6!

where tV5v21, and v05(h/2p)21. This means that this
slowly varying anomalous relaxation behavior is mos
manifested in the low temperature limit~the contraction
case!. In particular, it would be a case of the relaxor highTc
ferroelectric films, in which this behavior is observed, bein
for example, responsible for a ‘‘diffuse’’ phase transitio
where there is a nearly continuous spectrum of transit
points, as in our situation, where a multitude of dynam
quasiequilibria is present@28#.

Let us also state clearly that the oscillating part of t
total energy of the molecular ensemble,Eosc, related to the
attraction potential of the disclinations@16#, is quantized@see
Eqs. ~A6! and ~B5!, and realize the contribution of Fran
index m], namely,

Eosc56
ln@~m11!/2a~m21!#

ln pc
2 . ~B7!

From Eq.~B7! it clearly follows that the quantization ofEosc
is assured bym @26#, whereasa @see Eqs.~1!–~3! again#
accounts for whether we are near the contraction regime
rather beyond it. Note that atDws51 ~‘‘tetratic’’ phase!, Eosc
gets a singularity, becausea50.
.

-
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Systems, Świdno (Poland), 1994, edited by J. Popielawski and
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